Abstract
Determination of the molecular structure of asphaltenes, especially in their native environment, is a formidable challenge in petroleum chemistry. Here we demonstrate that a combination of different spectroscopy and imaging based experimental techniques can be utilized to determine structures of asphaltenes, which have precipitated out of a crude oil, in an environment similar to real field conditions. A high pressure–high temperature quartz crystal microbalance (HPHT-QCM) setup can be used to detect asphaltene onset at oil production conditions. HPHT-QCM can also simulate CO2 injection conditions mimicking gas injection methods used to enhance oil recovery from depleted oil reservoirs. In this paper, we present the first compositional and structural research study on the QCM asphaltene deposits under gas injection conditions and compare it to n-C7 asphaltenes from the same crude oil precipitated in the laboratory. This study combines the use of Fourier transform infrared (FTIR) spectroscopy, nuclear magn...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.