Abstract
Human P450 protein CYP2C9 is one of the major drug-metabolizing isomers, contributing to the oxidation of 16% of the drugs currently in clinical use. To examine the interaction mechanisms between CYP2C9 and proton pump inhibitions (PPIs), we used molecular docking and molecular dynamics (MD) simulation methods to investigate the conformations and interactions around the binding sites of PPIs/CYPP2C9. Results from molecular docking and MD simulations demonstrate that nine PPIs adopt two different conformations (extended and U-bend structures) at the binding sites and position themselves far above the heme of 2C9. The presence of PPIs changes the secondary structures and residue flexibilities of 2C9. Interestingly, at the binding sites of all PPI-CYP2C9 complexes except for Lan/CYP2C9, there are hydrogen-bonding networks made of PPIs, water molecules, and some residues of 2C9. Moreover, there are strong hydrophobic interactions at all binding sites for PPIs/2C9, which indicate that electrostatic interactions and hydrophobic interactions appear to be important for stabilizing the binding sites of most PPIs/2C9. However, in the case of Lan/2C9, the hydrophobic interactions are more important than the electrostatic interactions for stabilizing the binding site. In addition, an interesting conformational conversion from extended to U-bend structures was observed for pantoprazole, which is attributed to an H-bond interaction in the binding pocket, an internal π-π stacking interaction, and an internal electrostatic interaction of pantoprazole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.