Abstract

Multimodal sentiment analysis is one of the important research areas in the field of artificial intelligence today. Multimodal sentiment analysis is to extract features from various human modalities such as facial expressions, body movements, and voice information, perform modal fusion, and finally classify and predict emotions. This technology can be used in multiple scenarios such as stock prediction, product analysis, movie box office prediction, etc., especially psychological state analysis, and has important research significance. This paper introduces two important datasets in multimodal sentiment analysis, namely CMU-MOSEI and IEMOCAP. It also introduces the feature-level fusion, model-level fusion, decision-level fusion and other fusion methods in multimodal fusion methods, and also introduces the semantic feature fusion neural network and sentiment word perception fusion network in multimodal sentiment analysis related models. Finally, the application of multimodal sentiment analysis models in depression and other related mental illnesses and the challenges of multimodal sentiment analysis models in the future are introduced. This paper hopes that the above research will be helpful for multimodal sentiment analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.