Abstract

The problem of disposing and managing solid waste materials has become one of the major environmental, economic, and social issues. Utilization of solid wastes in the production of building materials not only solves the problem of their disposal but also helps in the conversion of wastes into useful and cost-effective products. In the present study, solid waste materials of organic and inorganic nature were applied in the production of sustainable cementitious composites (CC) and studied the effect of incorporated wastes on physical and mechanical properties of the resultant CC. The selected solid waste materials were cotton, polyester, PET, carpet, glass, and granulated blast furnace slag (GBFS). These wastes were incorporated in CC in different proportions and form the tuff tiles using moulds (12.5″ × 6″ × 2.5″). The various physical (fineness, setting time, bulk density, and water absorption capacity) and mechanical (flexural strength) properties of all the specimens were determined after curing period of 3, 7, and 28days. The results show that the incorporation of solid wastes in CC did not much affect their physical characteristics. However, the CC incorporated with the selected solid waste materials have a pronounced effect of their flexural strength and found to be higher (12-875%) compared to the plain CC. Similarly, the incorporation of the selected inorganic wastes (302-715 psi) in CC exhibit much higher flexural strength compared to the organic wastes (136-235 psi). The maximum flexural strength was observed when GBFS was utilized as a solid waste. The present work will provide a reliable step for the solid waste management and conversion of such wastes into useful commercial products for concrete manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call