Abstract

A numerical treatment is developed and implemented to solve the constitutive equations of nematodynamics according to the Leslie-Ericksen formulation for a cylindrical geometry. Nematic director equations in three dimensions are coupled to a Navier Stokes description of the velocity. This model is used to study the influence of the sample size for an experimental set-up corresponding to an combined electron spin resonance (ESR) rheological experiment in which the nematic sample is subject to a constant rotational velocity and to an aligning magnetic field perpendicular to the axis of rotation. The results of the simulations are employed to interpret experimental findings for a series of measurements of the ESR signal of tempone- 14 N dissolved in capillaries of different sizes containing the nematic liquid crystal ZLI 1083, with diameters ranging from 0.1 to 0.5 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.