Abstract
This paper evaluates Ensemble Kalman filter (EnKF) sequential data assimilation on a semi-distributed hydrological model implementation on two snow-dominated watersheds, focussing strictly on snow accumulation and melt periods while assimilating streamflow for the updating of various state variables combinations. Three scenarios are explored in depth: (1) updating the three state variables that were previously identified pertinent for snow-free hydrological processes: soil moisture in the intermediate layer, soil moisture in the deep layer, and the overland routing reservoir, (2) updating the snow water equivalent, and (3) updating all of the above state variables. Inputs (precipitation and temperature) and output (streamflow) perturbation factors are first identified for each scenario, based on their performance and reliability for simulation with assimilation. The three EnKF implementations are next compared to one another and to an open-loop run, in an ensemble forecasting context. The third scenario outperforms the others in most situations and provides the largest gain in reliability. The ensemble size may also be reduced, from 1000 to 50 members, without much loss in performance or reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.