Abstract

The study reports the development of a liquid smoke solution of rice husk ash (RHA) as a green corrosion inhibitor in NH4Cl solution in approaching corrosion protection for refinery facilities. The recent utilization of RHA has a partial solution to address the possible chemical to form a filming layer to disconnect bare metal and their environment. This work prepared the RHA solution by condensing the RHA vapor before adding it to various concentrations. The corrosion test of potentiodynamic and electrochemicals intends to discover the inhibitor's corrosion resistance before examining the electronic transition corresponding to the contribution of several functional groups using Ultraviolet Visible (UV–Vis) and Fourier-Transform Infrared Spectroscopy (FTIR). Surface evaluation intends to unveil the nature of the corrosion by utilizing the Scanning Electronic and Atomic Force Microscope. The corrosion test result shows the depression of corrosion rate to 0.120 mmpy with high efficiency beyond 96 % in the addition of 7.5 ppm RHA inhibitor. The greater Nyquist semicircle diameter at high concentrations increases the adsorption of the RHA on the surface of C1018. The electronic transition of n–π* and π –π* shows an extensive contribution of CC, CO, and –OH based on the UV–Vis and FTIR test. The formation of a complex compound of Fe-(NH4Cl-RHA)n blocks the corrosion active sites to reduce the corrosion. This study paves the way for using RHA as an organic compound under NH4Cl conditions, such as in a refinery process facility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call