Abstract

We analyze the opportunities in and limits to investigating quasars with the Gaia satellite by studying Gaia’s low- and high-resolution quasar spectra, with consideration of their signal-to-noise ratios. Furthermore, we explore bright quasars from the Sloan Digital Sky Survey with broad emission lines (BELs) redshifted into the spectral range of Gaia’s Radial Velocity Spectrograph (RVS). We find that Gaia low-resolution spectra of quasars enable a determination of equivalent widths, continuum variability, and the Baldwin effect. Additionally, it will be feasible to analyze BEL reverberation mapping with Gaia data for a small sample of objects. These quasars should have a high cadence of measurements or higher time lags due to large redshifts, high quasar luminosities, or selected low-ionization lines. More than 500 known quasars will also get high-resolution spectra of individual BELs in the small wavelength range of the RVS. This allows an investigation of broad emission line shapes and their variabilities to get information on the spatial structure and kinematics of the broad line region. We identify six known variable SDSS quasars with BELs in the RVS that have interesting spectra for a potential intrinsic line variability investigation. However, the signal-to-noise ratio of the RVS is too small for studying narrow and broad absorption lines in quasar spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call