Abstract

Chrysosplenol C (4',5,6-trihydroxy-3,3',7-trimethoxyflavone) isolated from Miliusa balansae has unique structural features as a reversible inotropic agent independent of β-adrenergic signaling and with selective activation of cardiac myosin ATPase. Hence, a series of chrysosplenol analogues were synthesized and explored for identification of pharmacophore that is essential for the increasing contractility in rat ventricular myocytes. Analogue 7-chloro-2-(3-hydroxyphenyl)-3-methoxy-4H-chromen-4-one showed highly potent contractility (54.8% at 10 μM) through activating cardiac myosin ATPase (38.7% at 10 μM). Our systematic structure-activity relationship study revealed that flavonoid nucleus of chrososplenol C appears to be an essential basic skeleton and hydrophobic substituent at position 7 of chromenone such as methoxy or chloro enhances the activity. Additionally, our ATPase study suggested that these chrysosplenol analogues have selectivity toward cardiac myosin activation. Thus, the novel flavonone with 3-/7-hydrophobic substituent and 3'-hydrogen bonding donor function is a novel scaffold for discovery of a new positive inotropic agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.