Abstract

We have investigated the rare-earth ferrites perovskite RFeO3 (R = Pr, Nd) for their structural, electronic, magnetic, optical, thermodynamic, and thermoelectric behavior using DFT as incorporated in WIEN2K software package. We have used FPLAPW method with exchange–correlation potentials: GGA, mBJ, and mBJ + U for investigating the current problem. For electronic properties, we have studied the band profile, density of states, and electronic density of RFeO3. The band profile of RFeO3 comes out to be half-metallic in mBJ + U. Further, optical properties have been computed corresponding to photon energy (0–10 eV). Thermodynamic examination of these compounds is performed using the Quasi-Harmonic Debye model. Consequently, the thermodynamic parameters' variation has been examined with temperature (0–1200 K) as well as pressure (0–40 GPa). Finally, we have evaluated the thermoelectric parameters using BoltzTrap code, and their variation with temperature (50–1200 K) and chemical potential (−2 to 2 eV) has been presented. We have obtained a maximum thermoelectric efficiency of 0.38 for PrFeO3 perovskite, and it is found that it increases with temperature. These materials are suitable to be used as a source in spintronic devices and UV absorbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call