Abstract
Osteoarthritis is one of the foremost disabling disorders in the world. There is no definitive treatment to prevent the progression of osteoarthritis. Hence, palliative treatment aims at minimizing pain, disability and improving function, performance and quality of life. Oral administration of nonsteroidal anti-inflammatory drug is associated with number of adverse effects and reduced therapeutic efficacy. Intra-articular injection has been the preferred route of drug administration. However, the clearance of drug from the arthritic site, risk of infections, cost and the pain associated with frequent injections make this route highly non-compliant to patients. Since osteoarthritis is a chronic condition which requires treatment for prolonged duration, there is an urgent need for another administration route which circumvents the hindrances linked with intra-articular route. Transdermal route across the skin locally at the osteoarthritis site could help in surpassing the disadvantages associated with intra-articular route. However, traversing skin barrier and reaching the chondrocytes with sufficient amount of the drug is extremely difficult. Nanocarrier-based approaches could hold an answer to the said shortcomings owing to their reduced size, targeting tunability and site specificity. In this article, we discuss the pathophysiology of osteoarthritis, molecular targets, and utilization of nanocarrier-based approaches to strategize the treatment of osteoarthritis in a new direction, i.e. topical delivery of nanocarriers in osteoarthritis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.