Abstract

Abstract In the current paper, the metal organic coordination polymer Zn4O(OH)2(BDC)2(H2O)2.7 (Zn-MOCP) with high thermal and chemical stability was synthesized by a direct mixing method at room temperature. Then the catalyst Ni@Zn-MOCP (7.5 wt% Ni) was successfully prepared via a wet impregnation strategy employing Ni(acac)2 (acac = acetylacetonate) as the precursor. The hydrogenation of crotonaldehyde was utilized as the probe reaction to explore its catalytic activity. The samples were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), N2 adsorption–desorption measurements, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). PXRD patterns of Ni@Zn-MOCP showed good coincidence with that of Zn-MOCP, and the pore texture of Zn-MOCP was still maintained after impregnation. Most of Ni(acac)2 over Zn-MOCP were reduced to Ni0 after reduction based on XPS analysis. In terms of the turnover of frequency (TOF) of ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call