Abstract

In this study, we aimed to investigate the pharmacological effects and underlying mechanisms of astragaloside IV (AS IV) against radiation-induced lung injury. We established experimental models of radiation-induced lung injury and observed the effect of AS IV on cell viability, cell death, inflammatory responses and ferroptosis. Accordingly, we found that AS IV restored the suppressed cell viability and promoted cell death induced by X-ray irradiation. Moreover, radiation-induced up-regulation of lactate dehydrogenase (LDH) release, ferroptosis, reactive oxygen species (ROS) and inflammatory responses were also restored by AS IV in a dose-dependent manner. Besides, in radiation-induced lung injury C57BL/6 mice, AS IV evidently alleviated lung injury and promoted the survival rate of lung-injured mice. And the ferroptosis level in mice lung tissues were also alleviated by the administration of AS IV in a dose-dependent manner. As a conclusion, by comparing the changes of ferroptosis, ROS and inflammatory responses in the experimental models, we validated that AS IV could inhibit inflammatory responses and cell injury in the treatment of radiation-induced lung injury by suppressing ferroptosis. This finding not only find potentially effective treatments to mitigate radiation-induced lung injury, but also provides supporting evidence for clinical application of AS IV to improve the management of radiation-treated patients and minimize the associated lung complications or other adverse effects. Moreover, as inflammation and ROS are key contributors to tissue damage in various diseases, our study suggested the potential application of AS IV in the treatments for other diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call