Abstract

To screen the differentially expressed proteins at the early stage of K562 cells treated with meisoindigo by using tandem mass tags (TMT)-based proteomics technology, and to explore the mechanism for meisoindigo-inducing apoptosis. The half inhibitory concentration (IC50) of mesoindigo on K562 cells was determined by CCK8. The flow cytometry was used to assay the apoptosis of K562 cells treated by meisoindigo or DMSO. Total proteins were extracted from the cells treated with 0.2% DMSO (control) or 20 μmol/L meisoindigo (Test) for 2 hours. Then, the TMT-labeling HPLC-MS/MS was used to identify and quantify the peptides and their abundance, all the tests were repeated for 3 times. The Mascot software was used to identify the proteins; the GO annotations, enrichment and cluster analysis were used to analyze the differentially expressed proteins. Meisoindigo-induced K562 cell apoptosis in a dose-dependent manner (r=0.98), 5 544 proteins were identified, 4792 of which were quantified. The protein with expression difference>1.5-folds in Test group accoanted for 8, out of which the expression of 4 proteins were up-regulated and 4 were down-regulated. The differentially expressed proteins mainly associated with reactive oxygen species (ROS). Several proteins including DDIT4 were found to have dramatic changes in the early stage of K562 cells treated with meisoindigo by using quantitative proteomics technology. The ROS metabolic process may play important roles in meisoindigo-inducing apoptosis of K562 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.