Abstract

SummaryEfficient algorithms are considered for the computation of a reduced‐order model based on the proper orthogonal decomposition methodology for the solution of parameterized elliptic partial differential equations. The method relies on partitioning the parameter space into subdomains based on the properties of the solution space and then forming a reduced basis for each of the subdomains. This yields more efficient offline and online stages for the proper orthogonal decomposition method. We extend these ideas for inexpensive adjoint based a posteriori error estimation of both the expensive finite element method solutions and the reduced‐order model solutions, for a single and multiple quantities of interest. Various numerical results indicate the efficacy of the approach. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.