Abstract

Allocating shared resources gradually allows tasks to be completed efficiently within the allocated time. This is the process of scheduling. The terms "task" and "resource" are used separately in task scheduling and resource allocation, respectively. In computer science and operational management, scheduling is a hot topic. Efficient schedules guarantee system effectiveness, facilitate sound decision-making, reduce resource waste and expenses, and augment total productivity. Selecting the most appropriate resources to complete work items and schedules for computing and business process execution is typically a laborious task. Particularly in dynamic real-world systems, where scheduling different dynamic tasks involves multiple tasks, is a difficult problem. Emerging technology known as "Machine Learning Algorithms" has the ability to dynamically resolve the issue of scheduling tasks and resources optimally. This review paper discusses a study that looked at Machine Learning algorithms used them to schedule tasks dynamically. The Machine Learning Algorithms utilized in dynamic task scheduling and a comparative analysis of those methods are used in this paper to address the study's findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.