Abstract

The Optical properties of the FBTC (1-((4-((5-chlorobenzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)-3H-benzo[f]chromen-3-one) molecule were studied experimentally and theoretically. The spectra of absorption and fluorescence were recorded in various solvents to explore their Solvatochromic behavior and dipole moment at room temperature. To determine the ground and excited state of dipole moment experimentally and theoretically, we employed different Solvatochromic techniques, including microscopic solvent polarity functions developed by Lippert, Bakhshiev, Kawaski-Chamma-Viallet, and Reichardt's, as well as density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The stability of the excited state dipole moment in FBTC is higher. Using prime functional, FBTC was optimized in its ground state, and its HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital), energies were estimated. These values were then compared with those obtained through cyclic voltammetry. Based on the HOMO and LUMO values given, we calculated the global reactivity parameter and energy gap, which was found to be low at 3.77eV. This study also includes an estimation of electron absorption energies and oscillator strength. Natural population analysis (NPA), Milliken atomic charge, and molecular electrostatic potential (MESP) map are correlated. In addition, FBTC exhibited exceptional physiological temperature sensing behaviour from 20°C -65°C with high relative sensitivity and firm stability. Hence these results confirm that FBTC is a potential candidate for photonic devices and it's also applicable in optical temperature sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call