Abstract
A comprehensive investigation of the Hg2+ coordination chemistry and 197m/gHg radiolabeling capabilities of cyclen-based commercial chelators, namely, DOTA and DOTAM (aka TCMC), along with their bifunctional counterparts, p-SCN-Bn-DOTA and p-SCN-Bn-TCMC, was conducted to assess the suitability of these frameworks as bifunctional chelators for the 197m/gHg2+ theranostic pair. Radiolabeling studies revealed that TCMC and DOTA exhibited low radiochemical yields (0%-6%), even when subjected to harsh conditions (80°C) and high ligand concentrations (10-4M). In contrast, p-SCN-Bn-TCMC and p-SCN-Bn-DOTA demonstrated significantly higher 197m/gHg radiochemical yields (100% ± 0.0% and 70.9% ± 1.1%, respectively) under the same conditions. The [197m/gHg]Hg-p-SCN-Bn-TCMC complex was kinetically inert when challenged against human serum and glutathione. To understand the differences in labeling between the commercial chelators and their bifunctional counterparts, non-radioactive natHg2+ complexes were assessed using NMR spectroscopy and DFT calculations. The NMR spectra of Hg-TCMC and Hg-p-SCN-Bn-TCMC suggested binding of the Hg2+ ion through the cyclen backbone framework. DFT studies indicated that binding of the Hg2+ ion within the backbone forms a thermodynamically stable product. However, competition can form between isothiocyanate binding and binding through the macrocycle, which was experimentally observed. The isothiocyanate bound coordination product was dominant at the radiochemical scale as, in comparison, the macrocycle bound product was seen at the NMR scale, agreeing with the DFT result. Furthermore, a bioconjugate of TCMC (TCMC-PSMA) targeting prostate-specific membrane antigen was synthesized and radiolabeled, resulting in an apparent molar activity of 0.089 MBq/nmol. However, the complex demonstrated significant degradation over 24h when exposed to human serum and glutathione. Subsequently, cell binding assays were conducted, revealing a Ki value ranging from 19.0 to 19.6nM. This research provides crucial insight into the effectiveness of current commercial chelators in the context of 197m/gHg2+ radiolabeling. It underscores the necessity for the development of specific and customized chelators to these unique "soft" radiometals to advance 197m/gHg2+ radiopharmaceuticals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.