Abstract

The Oxygen Reduction Reaction (ORR) catalyzed by N-carbon electrocatalyst was investigated, focusing on the fundamental features for the selective H2O2 formation. The electrochemical characterization was primarily performed by the use of the Rotating Ring Disk Electrode (RRDE) tool in both hydrodynamic Linear Sweep Voltammetry (LSV) mode and by Chronoamperometry (CA) measurement. We rationalized the structure/activity relationship, reaching a new state-of-the-art in terms of current density for the H2O2 generation. The study also explored the performance in relation with the electrode deposit procedure that is of fundamental importance to achieve a suitable macroscopic electrode preparation. Furthermore, the electrode implementation in a polymer membrane static flow electrolyzer setup, was evaluated to understand how the material catalytic features such as current ranges and selectivity scale up from a classical three electrode system to a more realistic application-focused environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.