Abstract

We report a novel framework for achieving fragment-based molecular design using pixel convolutional neural network (PixelCNN) combined with the simplified molecular input line entry system (SMILES) as molecular representation. While a widely used recurrent neural network (RNN) assumes monotonically decaying correlations in strings, PixelCNN captures a periodicity among characters of SMILES. Thus, PixelCNN provides us with a novel solution for the analysis of chemical space by extracting the periodicity of molecular structures that will be buried in SMILES. Moreover, this characteristic enables us to generate molecules by combining several simple building blocks, such as a benzene ring and side-chain structures, which contributes to the effective exploration of chemical space by step-by-step searching for molecules from a target fragment. In conclusion, PixelCNN could be a powerful approach focusing on the periodicity of molecules to explore chemical space for the fragment-based molecular design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.