Abstract

<abstract> <p>Due to the growing interest in developing bioplastic films from renewable sources, the performance of biocomposite films produced of native starch from cassava clones reinforced with cassava bagasse was explored. The biocomposites were prepared from the starch of cassava clones MMEXV5, MMEXV40, and MMEXCH23, reinforced with bagasse at 1%, 5%, and 15%. Their structural, mechanical, and thermal properties were subsequently assessed. When analyzing the starch, differences in the intensities of the Raman spectra exhibit a possible variation in the amylose-amylopectin ratio. In the biocomposites, the bagasse was efficiently incorporated into polymeric matrixes and their thermogravimetric analysis revealed the compatibility of the matrix-reinforcement. The starch films from the MMEXV40 clone showed better tension (2.53 MPa) and elastic modulus (60.49 MPa). The assessed mechanical properties were also affected by bagasse concentration. Because of the above, the MMEXV40 cassava clone showed potential to develop polymeric materials, given its tuberous roots high yield, starch extraction, and good performance in its mechanical properties. At the same time, the starch source (clone) and the bagasse concentration interfere with the final properties of the biocomposites.</p> </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.