Abstract
Verification of regression models is primarily based on analysis of error terms and constitutes one of the most important steps in applied regression analysis. In cross-sectional models, the error terms are typically heteroskedastic, while in time series regressions the errors are often affected by serial correlation. Consequently, in this paper, we focus on Monte Carlo simulations applied to explore the power of several tests of homogeneity and tests for presence of autocorrelation. In the past decades, the computational power has increased significantly to allow the benefit of simulation from exact distributions, which are not defined explicitly. We will discuss 1) testing of homogeneity for a given number of components in the exponential mixture approximated by subpopulations and 2) simulation of power in several commonly used tests of autocorrelation. For the first case, we consider exact likelihood ratio test (ELR) and exact likelihood ratio test against the alternative with two-component subpopulation (ELR2). In the second case, we consider the Durbin-Watson, Durbin h, Breusch-Godfrey, Box-Pierce and Ljung-Box tests of 1st order serial correlation and the runs test of randomness in two different types of linear regression models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.