Abstract

Methane-oxidizing bacteria (MOB) possess the metabolic potential to assimilate the highly potent greenhouse gas, CH4, and can also synthesize valuable products. Depending on their distinct and fastidious metabolic pathways, MOB are mainly divided into Type I and Type II; the latter are known as producers of polyhydroxyalkanoate (PHA). Despite the metabolic potential of MOB to synthesize PHA, the ecophysiology of MOB, especially under high CH4 flux conditions, is yet to be understood. Therefore, in this study, a rice paddy soil receiving a high CH4 flux from underground was used as an inoculum to enrich MOB using fed-batch operation, then the enriched Type II MOB were characterized. The transitions in the microbial community composition and CH4 oxidation rates were monitored by 16S rRNA gene amplicon sequencing and degree of CH4 consumption. With increasing incubation time, the initially dominant Methylomonas sp., affiliated with Type I MOB, was gradually replaced with Methylocystis sp., Type II MOB, resulting in a maximum CH4 oxidation rate of 1.40g-CH4/g-biomass/day. The quantification of functional genes encoding methane monooxygenase, pmoA and PHA synthase, phaC, by quantitative PCR revealed concomitant increases in accordance with the Type II MOB enrichment. These increases in the functional genes underscore the significance of Type II MOB to mitigate greenhouse gas emission and produce PHA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.