Abstract
Abstract In recent years, members of the marine actinomycete genus Salinispora have proven to be a precious source of structurally diverse secondary metabolites, including the potent anticancer agent salinosporamide A and the enediyne-derived sporolides. The tremendous potential of these marine-dwelling microbes for natural products biosynthesis, however, was not fully realized until sequencing of the Salinispora tropica genome revealed the presence of numerous orphan biosynthetic loci besides a plethora of rare metabolic pathways. This contribution summarizes the biochemical exploration of this prolific organism, highlighting studies in which genome-based information was exploited for the discovery of new enzymatic processes and the engineering of unnatural natural products. Inactivation of key genes within the salinosporamide pathway has expanded its inherent metabolic plasticity and enabled access to various salinosporamide derivatives by mutasynthesis. New insights into the biosynthesis of the sporolides allowed us to increase production titers of these structurally complex molecules, thereby providing the means to search for the DNA cleaving presporolide enediyne.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.