Abstract

AbstractLithium batteries (LBs) are developed tremendously owing to their excellent energy density as well as cyclic persistence, exhibiting promising applications from portable devices to e‐transportation and grid fields. However, with the ever‐increasing demand for intelligent wearable electronics, more requests are focused on high safety, good durability, and satisfied reliability of LBs. The self‐healing route, which can simulate the ability of organic organisms to repair damage and recover initial function through its intrinsic vitality, is believed to be an efficient strategy to alleviate the unavoidable physical or chemical fatigue and damage issues of LBs, beneficial for the realization of the above mentioned high requests. In this review, the applicability and development of self‐healing materials are summarized in electrodes, electrolytes, and interfacial layers in recent years, focusing on exploring the feasibility of different self‐healing strategies in LBs, discussing the advantages and disadvantages of existing strategies in different parts of batteries, and indicating the possible research directions for beginners who are interested in this field. Finally, the critical challenges and the future research directions as well as opportunities are prospected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.