Abstract

Coating Zr-based metallic glass, Zr53 Cu31 Ni11 Al5 (Zr-MG), on a Cu current collector (CC) and Li metal anode (LMA) significantly improves the cycle performance of both types of Li-ion batteries, namely, anode-free Li-ion batteries (AFLBs) and Li metal batteries (LMB). The inherent isotropy and homogeneity of the Zr-MG significantly improve the surface uniformity of the CC and LMA. A 12nm-thick Zr-MG thin film coating on the CC reduces the overpotential in the AFLB, leading to a more uniform Li plating morphology. The Li film covers almost the entire surface of the Zr-CC, whereas it only covers ≈75% of the bare CC during charging. An LFP||Zr-CC full-cell exhibits a capacity retention of 63.6% after the 100th cycle, with an average CE of 99.55% at a 0.2 C rate. In the case of the LMB, a 12nm-thick Zr-MG thin film-coated LMA (Zr-LMA) exhibits a stable capacity of up to 1500 cycles. An LFP||Zr-LMA full-cell exhibits capacity retention and CE after 1500 cycles of 66.6% and 99.97%, respectively, at a 1 C rate. Zirconium-MG thin films with atomic-level uniformity, outstanding corrosion resistance, lithiophilic characteristics, and high diffusivity result in superior AFLB and LMB performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.