Abstract

Subgraph Isomorphism is a fundamental problem in graph data processing. Most existing subgraph isomorphism algorithms are based on a backtracking framework which computes the solutions by incrementally matching all query vertices to candidate data vertices. However, we observe that extensive duplicate computation exists in these algorithms, and such duplicate computation can be avoided by exploiting relationships between data vertices. Motivated by this, we propose a novel approach, BoostIso , to reduce duplicate computation. Our extensive experiments with real datasets show that, after integrating our approach, most existing subgraph isomorphism algorithms can be speeded up significantly, especially for some graphs with intensive vertex relationships, where the improvement can be up to several orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.