Abstract

Stormwater and snowmelt runoff is known to contribute to the deterioration of quality of urban surface waters. Vehicular traffic is recognised as a major source of a wide range of pollutants to urban runoff, including conventional pollutants, such as suspended solids and metals, and those referred to as ‘contaminants of emerging concern’. The aim of this study was to investigate the contribution of selected metal(loid)s (Cd, Cr, Cu, Ni, Pb, Pd, Sb, W, Zn), polycyclic aromatic hydrocarbons (PAHs), nonylphenols, octylphenols and –ethoxylates, phthalates and bisphenol A (BPA) from vehicular traffic by sampling urban roadside snow at eight sites, with varying traffic intensities, and one control site without direct impacts of traffic. Our results confirmed that vehicles and traffic-related activities were the sources of octylphenols, BPA and phthalates as well as the metal(loid)s Sb and W, infrequently reported in previous studies. Among metal(loid)s, Cu, Zn and W occurred in the highest concentrations (up to 1.2 mg/L Cu, 2.4 mg/L Zn and 1.9 mg/L W), while PAHs and phthalates occurred in the highest concentrations among the trace organic pollutants (up to 540 μg/L phthalate diisononyl phthalate). Among the phthalates, di-(2-ethylhexyl)phthalate had the highest frequency of detection (43% of the roadside samples). While BPA and octylphenols had relatively high frequencies of detection (50% for BPA and 81% for octylphenols), they were present in comparatively low concentrations (up to 0.2 μg/L BPA and 1.1 μg/L octylphenols). The control site displayed generally low concentrations of the pollutants studied, indicating that atmospheric deposition was not a significant source of the pollutants found in the roadside snow. Several of the pollutants in the roadside snow exceeded the applicable surface water and stormwater effluent guideline values. Thus, the transport of these pollutants with runoff posed risk of causing adverse effects in the receiving surface waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call