Abstract
The purpose of this work is to show that chaos control techniques (OGY, in special) can be used to efficiently keep a spacecraft around another body performing elaborate orbits. We consider a satellite and a spacecraft moving initially in coplanar and circular orbits, with slightly different radii, around a heavy central planet. The spacecraft, which is the inner body, has a slightly larger angular velocity than the satellite so that, after some time, they eventually go to a situation in which the distance between them becomes sufficiently small, so that they start to interact with one another. This situation is called as an encounter. In previous work we have shown that this scenario is a typical situation of a chaotic scattering for some well-defined range of parameters. Considering this scenario, we first show how it is possible to find the unstable periodic orbits that are located in the chaotic invariant set. From the set of unstable periodic orbits, we select the ones that can be combined to provide the desired elaborate orbit. Then, chaos control technique based on the OGY method is used to keep the spacecraft in the desired orbit. Finally, we analyze the results and make considerations regarding a realistic scenario of space exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.