Abstract

Multiple-point geostatistics has recently attracted significant attention for characterization of environmental variables. Such methods proceed by searching a large database of patterns obtained from a training image to find a match for a given data-event. The template-matching phase is usually the most time-consuming part of a MPS method. Linear transformations like discrete cosine transform or wavelet transform are capable of representing the image patches with a few nonzero coefficients. This sparsifying capability can be employed to speed up the template-matching problem up to hundreds of times by multiplying only nonzero coefficients. This method is only applicable to rectangular data-events because it is impossible to represent an odd-shaped data-event in a transformation domain. In this paper, the method is applied to speed up the image quilting (IQ) method. The experiments show that the proposed method is capable of accelerating the IQ method tens of times without sensible degradation in simulation results. The method has the potential to be employed for accelerating optimization-based and raster-scan patch-based MPS algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.