Abstract

The development of low-Pt catalysts with high activity and durability is critical for fuel cells. Here, Pt-skin wrapped sub-5nm PtCo intermetallic nanoparticles are successfully mounted on single atom Co-N-C support by exploiting the barrier effect of Co-anchor. According to a collaborative experimental and computational investigation, the increased oxygen reduction reaction activity of PtCo/Co-N-C arises from the direct electron transfer from PtCo to Co-N-C, and the resulting optimal d-band center of Pt. Owing to such unique electronic structure interaction and synergistic effect, the specific and mass activities of PtCo/Co-N-C are up to 4.20mA cm-2 and 2.71 A mgPt-1 , respectively, with barely degraded stability after 40 000 CV cycles. The PtCo/Co-N-C also exhibits outstanding activity as an ethanol electrocatalyst. This work shows a new and effective route to boost the overall efficiency of direct ethanol fuel cells in acidic media by integrating intermetallic low-Pt alloys and single atom carbon support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.