Abstract
We present a novel strategy for approximate furthest neighbor search that selects a set of candidate points using the data distribution. This strategy leads to an algorithm, which we call DrusillaSelect, that is able to outperform existing approximate furthest neighbor strategies. Our strategy is motivated by a study of the behavior of the furthest neighbor search problem, which has significantly different structure than the nearest neighbor search problem, and can be understood with the help of an information-theoretic hardness measure that we introduce. We also present a variant of the algorithm that gives an absolute approximation guarantee; under some assumptions, the guaranteed approximation can be achieved in provably less time than brute-force search. Performance studies indicate that DrusillaSelect can achieve comparable levels of approximation to other algorithms, even on the hardest datasets, while giving up to an order of magnitude speedup. An implementation is available in the mlpack machine learning library (found at http://www.mlpack.org).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.