Abstract

Smartphones now dominate the Global Navigation Satellite System (GNSS) devices capable of collecting raw data. However, they also offer valuable research opportunities in intentional jamming, which has become a serious threat to the GNSS. Smartphones have the potential to locate jammers, but their robustness and sensitivity range need to be investigated first. In this study, the response of smartphones with dual-frequency, multi-constellation reception capability, namely, a Xiaomi Mi8, a Xiaomi 11T, a Samsung Galaxy S20, and a Huawei P40, to various single- and multi-frequency jammers is investigated. The two-day jamming experiments were conducted in a remote area with minimal impact on users, using these smartphones and two Leica GS18 and two Leica GS15 geodetic receivers, which were placed statically at the side of a road and in a line, approximately 10 m apart. A vehicle with jammers installed passed them several times at a constant speed. In one scenario, a person carrying the jammer was constantly tracked using a tacheometer to determine the exact distance to the receivers for each time stamp. The aim was, first, to determine the effects of the various jammers on the smartphones’ positioning capabilities and to compare their response in terms of the speed and quality of repositioning with professional geodetic receivers. Second, a method was developed to determine the position of the interference source by varying the signal loss threshold and the recovery time on the smartphone and the decaying carrier-to-noise ratio (CNR). The results indicate that GNSS observations from smartphones have an advantage over geodetic receivers in terms of localizing jammers because they do not lose the signal near the source of the jamming, but they are characterized by sudden drops in the CNR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call