Abstract

Nonlinear programming has found useful applications in protein biophysics to help understand the microscopic exchange kinetics of data obtained using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Finding a microscopic kinetic solution for HDX-MS data provides a window into local protein stability and energetics allowing them to be quantified and understood. Optimization of HDX-MS data is a significant challenge, however, due to the requirement to solve a large number of variables simultaneously with exceptionally large variable bounds. Modeled rates are frequently uncertain with an explicate dependency on the initial guess values. In order to enhance the search for a minimum solution in HDX-MS optimization, the ability of selected constrained variables to propagate throughout the data is considered. We reveal that locally bound constrained optimization induces a global effect on all variables. The global response to local constraints is large and surprisingly long-range, but the outcome is unpredictable, unexpectedly decreasing the overall accuracy of certain data sets depending on the stringency of the constraints. Utilizing previously described in-house validation criteria based on covariance matrices, a method is described that is able to accurately determine whether constraints benefit or impair the optimization of HDX-MS data. From this, we establish a new two-stage method for our online optimizer HDXmodeller that can effectively leverage locally bound variables to enhance HDX-MS data modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.