Abstract

Synchronization of the activity in neural networks is a fundamental mechanism of brain function, putatively serving the integration of computations on multiple spatial and temporal scales. Time scales are thought to be nested within distinct spatial scales, so that whereas fast oscillations may integrate local networks, slow oscillations might integrate computations across distributed brain areas. We here describe a newly developed approach that provides potential for the further substantiation of this hypothesis in future studies. We demonstrate the feasibility and important caveats of a novel wavelet-based means of relating time series of three-dimensional spatial variance (energy) of fMRI data to time series of temporal variance of EEG. The spatial variance of fMRI data was determined by employing the three-dimensional dual-tree complex wavelet transform. The temporal variance of EEG data was estimated by using traditional continuous complex wavelets. We tested our algorithm on artificial signals with known signal-to-noise ratios and on empirical resting state EEG-fMRI data obtained from four healthy human subjects. By employing the human posterior alpha rhythm as an exemplar, we demonstrated face validity of the approach. We believe that the proposed method can serve as a suitable tool for future research on the spatiotemporal properties of brain dynamics, hence moving beyond analyses based exclusively in one domain or the other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.