Abstract

Flexible and stretchable photonics are emerging fields aiming to develop novel applications where the devices need to conform to uneven surfaces or whenever lightness and reduced thickness are major requirements. However, owing to the relatively small refractive index of transparent soft matter, these materials are not well adapted for light management at visible and near-infrared frequencies. Here we demonstrate simple, low cost and efficient protocols for fabricating Si1−xGex-based, sub-micrometric dielectric antennas with ensuing hybrid integration into different plastic supports. The dielectric antennas are realized exploiting the natural instability of thin solid films to form regular patterns of monocrystalline atomically smooth silicon and germanium nanostructures. Efficient protocols for encapsulating them into flexible and transparent, organic supports are investigated and validated. We benchmark the optical quality of the antennas with light scattering measurements, demonstrating the control of the islands structural colour and the onset of sharp Mie modes after encapsulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call