Abstract

Unbalanced load condition is one of the major issues of all commercial, industrial and residential sectors. Unbalanced load means that, when different loads are distributed on a three-phase four-wire system, unequal currents pass through the three phases. Due to it, a heavy current flows in the neutral wire, which not only adds the losses, but also puts constraints on three phases’ loads. In this paper, we have presented a practical approach for load balancing. First, we have considered the existing three-phase load system where the supply is a three-phase unbalanced supply. Before balancing the load, it is necessary to compensate the current in neutral wire. A nature-inspired moth–flame optimization (MFO) algorithm is used to propose a scheme for balancing of current in neutral wire. The information of a distributed single-phase load was used to balance the currents in a three-phase system. The feeder phase and load profiles of each single-phase load are used to reconfigure the network using an optimization process. By balancing the current of three phases, the current of the neutral conductor in substation transformers was reduced to almost zero.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call