Abstract

We exploited the monomer-feeding mechanism of reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization to achieve the successful polymerization-induced self-assembly (PISA) of asymmetric divinyl monomers. Colloidally stable cross-linked block copolymer nanoparticles with various morphologies, such as vesicles, were directly prepared at high solids. Morphologies of the cross-linked block copolymer nanoparticles could be controlled by varying the monomer concentration, degree of polymerization (DP) of the core-forming block, and length of the macro-RAFT agent. X-ray photoelectron spectroscopy (XPS) characterization confirmed the presence of unreacted vinyl groups within the obtained block copolymer nanoparticles, providing a landscape for further functionalization via thiol-ene chemistry. Finally, the obtained block copolymer nanoparticles were employed as additives to tune the mechanical properties of hydrogels. We expect that this study not only offers considerable opportunities for the preparation of well-defined cross-linked block copolymer nanoparticles, but also provides important insights into the controlled polymerization of multivinyl monomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call