Abstract
Toxoplasmosis and neosporosis are major protozoan diseases of global distribution. Toxoplasma gondii is the cause of toxoplasmosis, which affects almost all warm-blooded animals, including humans, while Neospora caninum induces neosporosis in many animal species, especially cattle. The current defective situation with control measures is hindering all efforts to overcome the health hazards and economic losses of toxoplasmosis and neosporosis. Adequate understanding of host-parasite interactions and host strategies to combat such infections can be exploited in establishing potent control measures, including vaccine development. Macrophages are the first defense line of innate immunity, which is responsible for the successful elimination of T.gondii or N. caninum. This action is exerted via the immunoregulatory interleukin-12 (IL-12), which orchestrates the production of interferon gamma (IFN-γ) from various immune cells. Cellular immune response and IFN-γ production is the hallmark for successful vaccine candidates against both T. gondii and N. caninum. However, the discovery of potential vaccine candidates is a highly laborious, time-consuming and expensive procedure. In this review, we will try to exploit previous knowledge and our research experience to establish an efficient immunological approach for exploring potential vaccine candidates against T. gondii and N. caninum. Our previous studies on vaccine development against both T. gondii and N. caninum revealed a strong association between the successful and potential vaccine antigens and their ability to promote the macrophage secretion of IL-12 using a murine model. This phenomenon was emphasized using different recombinant antigens, parasites, and experimental approaches. Upon these data and research trials, IL-12 production from murine macrophages can be used as an initial predictor for judgment of vaccine efficacy before further evaluation in time-consuming and laborious in vivo experiments. However, more studies and research are required to conceptualize this immunological approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.