Abstract

Many studies have revealed that global financial markets are experiencing low-risk anomalies. In the Korean market, for example, even the portfolios of high-risk stocks recorded a loss of about 70% between 2000 and 2016. In this study, we construct a low-risk portfolio that responds to low-risk anomalies in the Korean market using the Black–Litterman framework. We use three machine-learning predictive and traditional time-series models to predict the volatility of assets listed in the Korean Stock Price Index 200 (KOSPI 200) and select the best-performing one. Then, we use the model to classify assets into high- and low-risk groups and create a Black–Litterman portfolio that reflects the investor's view where low-risk stocks outperform high-risk stocks. The experiment shows that reflecting the low-risk view in the market equilibrium portfolio improves profitability and that this view dominates the market portfolio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.