Abstract

Antimicrobial resistance (AMR) is the ability of a microorganism to resist antimicrobial treatments against it, resulting in persisted and oftentimes lethal infection in individuals. The World Health Organization (WHO) predicts that AMR has the potential to skyrocket into one of the largest global health issues humanity has ever faced. In their 2018 fact sheet, they mention how it will cause 10 million deaths annually by 2050, as well as US $100 trillion in economic losses (World Health Organization, 2018). AMR has greatly reduced the efficacy of antibiotics in treating bacterial infections. According to Benno. H. ter Kuile and colleagues from the Department of Molecular Biology and Microbial Food Safety at the University of Amsterdam, most AMR is caused by practices in the agricultural industry, making it an extremely complex and difficult problem to solve regardless of its urgency (ter Kuile, Kraupner & Brul, 2016). However, Kaitlyn Kortright and colleagues from Yale University and the Yale School of Medicine, posit that phage therapy - a novel medical treatment with renewed interest in Western medicine - has large potential as an effective solution for antimicrobial resistance in bacteria (Kortright, Chan, Koff & Turner, 2019).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call