Abstract

The inhibition of corticosteroid biosynthesis could be considered as an emerging strategy to reduce their abnormally high levels, and in this framework CYP11B1 and CYP11B2 represent the most promising targets. In continuing our studies on flavonoid-like scaffolds as privileged structures in medicinal chemistry, in this paper we describe a small library of pyridyl- and imidazolylmethylchromones as potential inhibitors of these enzymes. Testing results proved that position 3 of the chromone scaffold is the most favorable for the introduction of the heme-coordinating heterocycles and, among them, the 4-imidazolyl moiety is the most convenient for the interaction with the heme iron of the selected cytochromes. A low nanomolar inhibitor of CYP11B1 (5c) was obtained, endowed with reasonable selectivity toward CYP11B2 and able to better discriminate with respect to CYP17 and CYP19.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.