Abstract
We provide a new hierarchy of semidefinite programming relaxations, called NCTSSOS, to solve large-scale sparse noncommutative polynomial optimization problems. This hierarchy features the exploitation of term sparsity hidden in the input data for eigenvalue and trace optimization problems. NCTSSOS complements the recent work that exploits correlative sparsity for noncommutative optimization problems by Klep et al. (MP, 2021), and is the noncommutative analogue of the TSSOS framework by Wang et al. (SIAMJO 31: 114–141, 2021, SIAMJO 31: 30–58, 2021). We also propose an extension exploiting simultaneously correlative and term sparsity, as done previously in the commutative case (Wang in CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization, 2020). Under certain conditions, we prove that the optima of the NCTSSOS hierarchy converge to the optimum of the corresponding dense semidefinite programming relaxation. We illustrate the efficiency and scalability of NCTSSOS by solving eigenvalue/trace optimization problems from the literature as well as randomly generated examples involving up to several thousand variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.