Abstract

Today large-scale simulation applications are becoming common in research and industry. A significant fraction of them run on multi-core clusters. Current parallel simulation kernels use multi-process and multi-thread to exploit inter-node parallelism and intra-node parallelism on multi-core clusters. We exploit task-base parallelism in parallel discrete event simulation (PDES) kernels, which is more fine-grained than thread-level and process-level parallelism. In our system, every simulation event is wrapped to a task. Work-stealing task scheduling scheme is applied to achieve dynamic load balancing among the multi-cores, and a graph partitioning approach is applied in partitioning simulation entities among the cluster nodes. Experimental results show that our PDES kernel outperforms existing PDES kernels by fully exploiting task parallelism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call