Abstract
Copositive programming is a relative young field which has evolved into a highly active research area in mathematical optimization. An important line of research is to use semidefinite programming to approximate conic programming over the copositive cone. Two major drawbacks of this approach are the rapid growth in size of the resulting semidefinite programs, and the lack of information about the quality of the semidefinite programming approximations. These drawbacks are an inevitable consequence of the intractability of the generic problems that such approaches attempt to solve. To address such drawbacks, we develop customized solution approaches for highly symmetric copositive programs, which arise naturally in several contexts. For instance, symmetry properties of combinatorial problems are typically inherited when they are addressed via copositive programming. As a result we are able to compute new bounds for crossing number instances in complete bipartite graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.