Abstract
Movement primitives (MPs) have been widely adopted for representing and learning robotic movements using reinforcement learning policy search. Probabilistic movement primitives (ProMPs) are a kind of MP based on a stochastic representation over sets of trajectories, able to capture the variability allowed while executing a movement. This approach has proved effective in learning a wide range of robotic movements, but it comes with the necessity of dealing with a high-dimensional space of parameters. This may be a critical problem when learning tasks with two robotic manipulators, and this work proposes an approach to reduce the dimension of the parameter space based on the exploitation of symmetry. A symmetrization method for ProMPs is presented and used to represent two movements, employing a single ProMP for the first arm and a symmetry surface that maps that ProMP to the second arm. This symmetric representation is then adopted in reinforcement learning of bimanual tasks (from user-provided demonstrations), using relative entropy policy search algorithm. The symmetry-based approach developed has been tested in an experiment of cloth manipulation, showing a speed increment in learning the task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.