Abstract
The Maximum Satisfiability (MaxSAT) problem is an optimization variant of the Satisfiability (SAT) problem. Several combinatorial optimization problems can be translated into a MaxSAT formula. Among exact MaxSAT algorithms, SAT-based MaxSAT algorithms are the best performing approaches for real-world problems. We have extended the WPM2 algorithm by adding several improvements. In particular, we show that by solving some subproblems of the original MaxSAT instance we can dramatically increase the efficiency of WPM2. This led WPM2 to achieve the best overall results at the international MaxSAT Evaluation 2013 (MSE13) on industrial instances. Then, we present additional techniques and heuristics to further exploit the information retrieved from the resolution of the subproblems. We exhaustively analyze the impact of each improvement what contributes to our understanding of why they work. This architecture allows to convert exact algorithms into efficient incomplete algorithms. The resulting solver had the best results on industrial instances at the incomplete track of the latest international MSE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.