Abstract

We introduce a novel approach to reduce the computational effort of solving convex chance constrained programs through the scenario approach. Instead of reducing the number of required scenarios, we directly minimize the computational cost of the scenario program. We exploit the problem structure by efficiently partitioning the constraint function and considering a multiple chance constrained program that gives the same probabilistic guarantees as the original single chance constrained problem. We formulate the problem of finding the optimal partition, a partition achieving the lowest computational cost, as an optimization problem with nonlinear objective and combinatorial constraints. By using submodularity of the support rank of a set of constraints, we propose a polynomial-time algorithm to find suboptimal solutions to this partitioning problem and we give approximation guarantees for special classes of cost metrics. We illustrate that the resulting computational cost savings can be arbitrarily large and demonstrate our approach on a case study from production planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.