Abstract
AbstractFull‐spectrum imaging is fast becoming a tool of choice for characterizing heterogeneous materials. Spectral images, which consist of a complete spectrum at each point in a spatial array, can be acquired from a wide variety of surface and microanalytical spectroscopic techniques. It is not uncommon that such spectral image data sets comprise tens of thousands of individual spectra, or more. Given the vast quantities of raw spectral data, factor analysis methods have proved indispensable for extracting the chemical information from these high‐dimensional data sets into a limited number of factors that represent the spectral and spatial characteristics of the sample's composition. It is well known that factor models suffer a ‘rotational ambiguity’, that is, there are an infinite number of factor models that will fit the data equally well. Thus, physically inspired constraints are often employed to derive relatively unique models that make the individual factors more easily interpreted by the practicing analyst. In the present work, we note that many samples undergoing spectral image analysis are ‘simple’ in the sense that only one or a few of the sample's constituents are present at any particular location. When this situation prevails, simplicity in the spatial domain can be exploited to make the resulting factor models more realistic. In particular, orthogonal rotation of the spatial‐domain vectors arising from singular value decomposition (SVD) of the spectral data matrix will be shown to be an effective method for making physically acceptable and easily interpretable estimates of the pure‐component spectra and abundances. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.