Abstract

We discuss the design, implementation and performance of algorithms suitable for the efficient computation of sparse Jacobian and Hessian matrices using Automatic Differentiation via operator overloading on multicore architectures. The procedure for exploiting sparsity (for runtime and memory efficiency) in serial computation involves a number of steps. Using nonlinear optimization problems as test cases, we show that the algorithms involved in the various steps can be adapted to multithreaded computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.